
Physical realizability of small-world networks

Thomas Petermann* and Paolo De Los Rios
Institute of Theoretical Physics, LBS, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland

�Received 11 August 2005; published 14 February 2006�

Supplementing a lattice with long-range connections effectively models small-world networks characterized
by a high local and global interconnectedness observed in systems ranging from society to the brain. If the
links have a wiring cost associated with their length l, the corresponding distribution q�l� plays a crucial role.
Uniform length distributions have received the most attention despite indications that q�l�� l−� exists—e.g.,
for integrated circuits, the Internet, and cortical networks. While length distributions of this type were previ-
ously examined in the context of navigability, we here discuss for such systems the emergence and physical
realizability of small-world topology. Our simple argument allows us to understand under which condition and
at what expense a small world results.
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The explosion of research activity in the field of complex
networks has led to a framework in order to describe systems
in disciplines ranging from the social sciences to biology �1�.
One feature shared by most real networks is the small-world
�SW� property involving a high degree of interconnectedness
at both a local and global level. That is, for every node, most
nodes close to it should also be close to each other and every
pair of nodes is separated, on average, by only a few links
�2�. More precisely, the latter is usually expressed with an at
most logarithmic increase of the mean distance as a function
of the system size. Although the SW phenomenon was first
introduced in a social context �3�, it is also relevant for com-
munication and technological systems such as the Internet
�4� or electronic circuits �5�. Small-world properties are of
great relevance for communication systems: SW networks
are particularly efficient for message passing protocols that
rely only on local knowledge of the network available to
each node �6�. It has also been pointed out recently that SW
networks could describe the architecture of neuronal net-
works: in vitro neuronal networks �7� and brain functional
networks �8� as well as the cerebral cortex �9� exhibit SW
features. In fact, the topology plays a crucial role in a neural
network, since the high local interconnectedness gives rise to
coherent oscillations while short global distances ensure a
fast system response �10�.

To model SW networks in Euclidean space, one starts
with a regular lattice which is highly interconnected locally
and then rewires every link �connecting nodes A and B� with
probability p; that is, the edge between the vertices A and B
is replaced by a long-range connection �or shortcut� between
nodes A and C, C being chosen at random �2�. Clearly, the
short global distances are due to the presence of shortcuts,
and as described in more detail below, it is the aim of this
paper to investigate the physical realizability of a SW net-

work. In the above model, p allows one to interpolate con-
tinuously between a fully regular �p=0� and an entirely ran-
dom �p=1� topology, the precise nature of this transition
being discussed below. If the shortcuts are merely added
�without losing local connections�, no significant changes in
the emergence of the SW topology result. We therefore deal
with the model where rewiring is not accompanied by edge
removal.

In the original formulation of the SW model, which re-
ceived most of the attention �11�, the length distribution of
the shortcuts is uniform, since a node can choose any other
node to establish a shortcut, irrespective of their Euclidean
distance. Yet new interesting properties emerge if this condi-
tion is relaxed—for example, if the distribution q�l� of con-
nection lengths l decays as a power law, q�l�� l−�. The navi-
gability in such a small world, for example, depends on the
decay exponent � �12�, and the nature of random walks and
diffusion over the network is also affected �13,14�. It was
even conjectured that the fundamental mechanism behind the
SW phenomenon is neither disorder nor randomness, but
rather the presence of multiple length scales �15� in agree-
ment with q�l�� l−�. Here we establish the properties of the
wiring mechanism which allows one to realize SW networks,
the improved navigability being a consequence of the SW
property.

Real SW networks are unlikely to be successfully mod-
eled according to the Watts-Strogatz recipe given above: if
shortcuts have to be physically realized, the cost of a long-
range connection is likely to grow with its length. Since
nodes connected by shortcuts can be at any Euclidean dis-
tance from each other, it turns out that the amount of re-
sources that they have to invest in their connections grows
linearly with the linear system size, and it is, a priori, unpre-
dictable. This is far from optimal for systems composed of
entities with limited resources �e.g, providers or neurons�.
Indeed, local �single-node� and global wiring cost consider-
ations are likely to be key factors in the formation of real SW
networks �16–21�. Regarding connection-length distributions
q�l�� l−�, such measurements were reported for systems cre-
ated through self-organization, design, and evolution—
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namely, for the Internet �21�, integrated circuits �22�, the
human cortex �23�, and regions of the human brain corre-
lated at the functional level �8�. Some modeling effort taking
into account the constraint of wiring minimization has been
made for systems where the connection lengths are �24� or
are not distributed according to a power law �25–27�, and
such length distributions emerge quite naturally when wiring
costs along with shortest paths are minimized �28�.

In this work we reanalyze the SW phenomenon from a
wiring cost perspective, for networks in D dimensions, built
using a power-law decaying distribution of shortcut lengths.
We find, both analytically and numerically, that ��D+1 is
the condition for the emergence of SW behavior. We also
found that the local interconnectedness increases with � and,
given a fixed total wiring cost, networks with larger values of
� are smaller worlds.

Given a D-dimensional lattice of linear size L, consisting
of N=LD sites, subject to periodic boundary conditions, it
shall be supplemented with pN additional connections whose
lengths are distributed according to q�l�� l−� as follows: for
every link to be added, we first choose its length according to
the �one-dimensional� distribution q�l� and then put it on the
lattice by randomly choosing one end point and the other at
the drawn distance l, such that no pair of sites is connected
by more than one additional connection.

Clearly, a certain amount of real shortcuts—i.e., long ad-
ditional links—is required for SW topology to emerge �2,31�.
It can thus be anticipated that the exponent � has to be
smaller than a critical value �c. Before we give the argument
allowing one to derive �c, let us recall that SW topology is
characterized by the following behavior of the mean dis-
tance:

�d� = L*F�� L

L*	 , �1�

the scaling function obeying �31,32�

F��x� � 
x if x � 1,

ln�x� if x � 1.
� �2�

In other words, SW topology corresponds to a logarithmic
increase of the mean distance with the system size �L�L*�
whereas in a large world �LW�—i.e., if L�L*—�d��L. For
�=0, the critical length scale in Eq. �1� is given by L*�p�
� p−1/D �32,33�. If � is positive, we shall derive L* �as well
as �c� through the following indirect argument: We look at
the probability that an arbitrarily chosen additional link is a
real shortcut, that is, that it spans the lattice,

Pc�L� = �
�1−c�L/2

L/2

q�l�dl , �3�

c being small but finite, and require �our ansatz� the expected
number of such connections to be of the order of 1 �31�:

Pc�L��p*�L�LD� 
 1. �4�

Here p*�L�LD is the desired number of additional links, im-
plying the emergence of SW topology for p� p*�L�. After
evaluating the scaling of Eq. �3�, Eq. �4� reads

p*�L� � �L−D if � � 1,

ln�L�/LD if � = 1,

L�−D−1 if � � 1.
� �5�

Equation �5� implies L*�p�� p−1/D for ��1; i.e., the behav-
ior of L* in this � range is the same as that for �=0. In the
case ��1, we have L*�p�� p1/��−D−1�, thus becoming infi-
nite at

�c = D + 1. �6�

We therefore have two possible regimes for ���c while LW
behavior prevails for ���c. Figure 1 shows the rescaled
mean distances as a function of the rescaled linear system

FIG. 1. �Color online� Mean distance versus
linear system size, both of these quantities being
rescaled by L�

*�p�, for p=0.001 ���, p=0.002
���, p=0.004 ���, p=0.008 ���, and p=0.016
���. The exponent � ranges from 0 to 3.5 as in-
dicated. The data collapses confirm Eqs. �5� and
�1� also for ���c �lower right panel�.
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size for different values of � and p=0.001,0.002, . . . ,0.016
in each set for the case D=2. The observed data collapses for
all chosen values of � confirm Eq. �5� obtained by our
simple argument as well as Eq. �1�. We numerically verified
Eq. �2�, especially in the limit L /L*�1, the logarithmic tail
of F� further being exhibited best for small �.1

As outlined above, a SW network is also characterized by
a high local interconnectedness. This topological property
can, for example, be measured by the clustering coefficient C
which is the probability that two nodes are connected, given
that they share a nearest neighbor. In contrast to the Watts-
Strogatz model, our initial lattices are characterized by
C=0, but by increasing the exponent of the link-length dis-
tribution, the degree of clustering becomes orders of magni-
tudes larger than for random networks with the same number
of nodes and links.

Let us now examine the wiring costs, which were our
prime motivation to look at SW networks with power-law
decaying link-length distributions and an important ingredi-
ent for real SW networks. The moments �l� and �l2� play a
crucial role as far as these costs are concerned. Indeed, finite
�l� and �l2� would allow for predictable costs for each node
and consequently for a better design of the network constitu-
ents. The total wiring cost CW= pLD�l� is also an important
quantity, its minimization governing, for example, the evolu-
tion of cortical networks �17�. We find for the first two mo-
ments the scaling relations summarized in Table I, the ex-
pressions for integer � being modified by logarithmic
corrections. In two dimensions, SW topology can be realized
even if �l�=const �that is, for 2���3=�c� whereas this is
not the case in one dimension where �l� becomes finite in the
L→� limit only above �c=2. Moreover, if D=3, it is even
possible to have �l�=O�1�= �l2� while still being in the SW
regime for 3���4=�c. An appropriate choice of the pa-
rameters D and � is thus the key to modeling networks
which are both efficient �SW topology� and economical �low
wiring costs�.

It is furthermore interesting to have a closer look at the
relationship between the wiring costs and the topology. As
� varies, one can ask what mean distance results given
a total amount of wiring length for the additional connec-
tions �i.e., the total cost�. Figure 2�a� reports these
dependences for �=0, 1, 1.5, and 1.75 �going from
the uppermost to the lowest set� for one-dimensional topolo-
gies of 104 sites. The largest value of �d� �the leftmost
circle� corresponds to the length scale L*�103�104=L;
thus, all the points in the figure represent the system in
the SW regime. It can clearly be seen that the mean distance
decreases with � at fixed wiring costs CW /N—i.e., the larger
�, the smaller the world. This behavior is qualitatively
recovered when expressing Eq. �1� in terms of x=CW /N
= p�l�. We made similar observations in two dimensions
�see Fig. 2�b��.

Let us now point out the generality of our argument for
the realizability of SW networks in Euclidean space. In fact,
it also applies to a version of the SW model where the links
are added in a different way: at every site, a link is added
with probability p—the other end point being chosen accord-
ing to the �D-dimensional� distribution q�l� �29�. This proce-
dure differs from the previous one in that the site from which
the new link will emanate “sees” the dimensionality of the
lattice, giving rise to a different normalization of q�l� with
respect to the version treated above. Furthermore, the just
described mechanism is equivalent to adding a link between
any pair of sites x and y with a probability proportional to
�x−y�−� �30�.

For this new construction procedure, the length distribu-
tion reads

1For general �, the second line of Eq. �2� may also read �ln�x��s���,
s����0.

TABLE I. Behavior of the moments of the shortcut-length dis-
tribution as a function of the linear system size L �for the “adding”
procedure 1�.

0���1 1���2 2���3 ��3

�l� L L2−� const const

�l2� L2 L3−� L3−� const

FIG. 2. �Color online� �a� Mean distance as a
function of the total wiring costs �divided by the
number of sites� for one-dimensional topologies
�N=104�. The curves ��, �=0; �, �=1; �, �
=1.5; and �, �=1.75� show that the mean dis-
tance decreases with � for a fixed value of CW /N.
�b� Analogous results for D=2 �N=500	500 and
�=0 ���, �=1 ��� and �=2 ����. All the points
shown here result from averaging over 100 real-
izations of networks.
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q�l� =
lD−1−�

�
2

L/2

l̃D−1−�dl̃

,

where the factor lD−1 explicitly accounts for the normaliza-
tion in D-dimensional space. With Eqs. �3� and �4�, which do
not depend on the details of the “adding” mechanism, we
obtain, for the critical probability,

p*�L� � �L−D if � � D ,

ln�L�/LD if � = D ,

L�−2D if � � D .
�

Conversely, this implies L*� p1/��−2D� for ��D and hence
the existence of a SW regime as long as

�c � 2D , �7�

in analogy with the previous reasoning. Inequality �7� had
already been derived �29,30�, but in a less intuitive frame-
work.

In summary, we have given a simple argument leading to
the precise conditions under which small-world topology
emerges and examined the physical realizability of such net-
works. Due to the generality of our argument, it is also ap-
plicable to other small-world models. We further showed that
small-world networks can be constructed in a very economi-
cal way if the parameters D and � are chosen appropriately
�although of course in real systems D is seldom a tunable
parameter�. As length distributions of the type investigated
here have been observed in a number of real-world networks,
such as integrated circuits, the Internet, or the human cortex,
we believe this work to have intriguing implications in their
modeling.
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